		SAW Resonator Specification	
Total Page 3	on		
	<u>MHz</u>	司名称 STOMER 品名称 PE SAW Resonator 433.92 号 TNO. L433C53 公司部品号 STOMER'S PART NO.	

The L433C is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount epoxy board. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 433.920 MHz.

433.92 MHz SAW Resonator

Package Dimension

unit: mm

Pin	Configuration
1	Input/Output
3	Output/Input
2,4	Ground

Sign	Data/mm	Sign	Data/mm
Α	1.20	E	5.00
В	0.80	F	3.50
С	0.46		
D	1.70		

Equivalent LC Model and Test Circuit

Marking

L433C model A7 month/year

Equivalent LC Model

Test Circuit

Typical Application Circuits

1) Low-Power Transmitter Application

Typical Frequency Response

2) Local Oscillator Application

Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

433.92MHz One-Port SAW Resonator For Wireless Remote Control

Absolute Maximum Ratings				
Rating	Value	Units		
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm		
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC		
Case Temperature	-45 to +120	°C		

Electrical Characteristics

Characteristics		Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _c		433.845		433.995	MHz
	Tolerance from 433.920MHz	Δf_c	2,3,4,5			±75	KHz
Insertion Loss		IL	2,5,6		1.5	2.0	dB
Quality Factor	Unloaded Q	QU			12.800		
	50 Ω loaded Q	QL	5,6,7		2.000		
Temperature Stability	Turnover Temperature	To		24	39	54	°C
	Turnover Frequency	f _O	5,7,8		f _c +2.7		KHz
	Frequency Temperature Coefficient	FTC	-		0.037		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	lf _A I	1		≦10		ppm/y τ
DC Insulation Resistance between Any Two Pins			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M			18	26	Ω
	Motional Inductance	L _M	570		86.0075		μH
	Motional Capacitance	См	5,7,5		1.56417		pF
	Pin 1 to Pin 2 Static Capacitance	Co	5,6,9	1.7	2.0	2.3	pF
	Transducer Static Capacitance	CP	5,6,7,9		1.7		pF
Test Fixture Shunt Inductance		L _{TEST}	2,7		78		nH
Lid Symbolization (in Addition to Lot and/or Date Code L433C							

CAUTION: electrostatic Sensitive Device, Observe precautions for handling.

©2006,All Rights Reserved

1. The center frequency, fC, is measured at the minimum IL point with the resonator in the 50 Ω test system.

2. Unless noted otherwise, case temperature $TC = +25^{\circ}C \pm 2^{\circ}C$.

3. Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged

temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

4. Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: f = f0 [1 - FTC (T0 - TC)2].

5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.

6. Derived mathematically from one or more of the following directly measured parameters: fC, IL, 3 dB bandwidth, fC versus TC, and CO.

7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.

8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.